All about dinosaurs and other archosaurs
HomeHome  CalendarCalendar  FAQFAQ  SearchSearch  MemberlistMemberlist  UsergroupsUsergroups  RegisterRegister  Log inLog in  

Share | 


Go down 

Posts : 51
Join date : 2016-10-07
Age : 22
Location : Scotland

PostSubject: Physiology   Wed Oct 19, 2016 9:46 pm

Because both modern crocodilians and birds have four-chambered hearts (albeit modified in crocodilians), it is likely that this is a trait shared by all archosaurs, including all dinosaurs. While all modern birds have high metabolisms and are "warm blooded" (endothermic), a vigorous debate has been ongoing since the 1960s regarding how far back in the dinosaur lineage this trait extends. Scientists disagree as to whether non-avian dinosaurs were endothermic, ectothermic, or some combination of both.

After non-avian dinosaurs were discovered, paleontologists first posited that they were ectothermic. This supposed "cold-bloodedness" was used to imply that the ancient dinosaurs were relatively slow, sluggish organisms, even though many modern reptiles are fast and light-footed despite relying on external sources of heat to regulate their body temperature. The idea of dinosaurs as ectothermic and sluggish remained a prevalent view until Robert T. "Bob" Bakker, an early proponent of dinosaur endothermy, published an influential paper on the topic in 1968.

Modern evidence indicates that even non-avian dinosaurs and birds thrived in cooler temperate climates, and that at least some early species must have regulated their body temperature by internal biological means (aided by the animals' bulk in large species and feathers or other body coverings in smaller species). Evidence of endothermy in Mesozoic dinosaurs includes the discovery of polar dinosaurs in Australia and Antarctica as well as analysis of blood-vessel structures within fossil bones that are typical of endotherms. Scientific debate continues regarding the specific ways in which dinosaur temperature regulation evolved.

In saurischian dinosaurs, higher metabolisms were supported by the evolution of the avian respiratory system, characterized by an extensive system of air sacs that extended the lungs and invaded many of the bones in the skeleton, making them hollow. Early avian-style respiratory systems with air sacs may have been capable of sustaining higher activity levels than mammals of similar size and build could sustain. In addition to providing a very efficient supply of oxygen, the rapid airflow would have been an effective cooling mechanism, which is essential for animals that are active but too large to get rid of all the excess heat through their skin.

Like other reptiles, dinosaurs are primarily uricotelic, that is, their kidneys extract nitrogenous wastes from their bloodstream and excrete it as uric acid instead of urea or ammonia via the ureters into the intestine. In most living species, uric acid is excreted along with feces as a semisolid waste. However, at least some modern birds (such as hummingbirds) can be facultatively ammonotelic, excreting most of the nitrogenous wastes as ammonia. They also excrete creatine, rather than creatinine like mammals. This material, as well as the output of the intestines, emerges from the cloaca. In addition, many species regurgitate pellets, and fossil pellets that may have come from dinosaurs are known from as long ago as the Cretaceous period.
Back to top Go down
View user profile
Back to top 
Page 1 of 1

Permissions in this forum:You cannot reply to topics in this forum
Dinosaurs and other archosaurs :: Dinosauria :: General Discussion-
Jump to: